AP Chemistry Ions

Monatomic Cations	Monatomic Anions	Polyatomic Cations	Polyatomic Anions		
Group 1 (including H)	Group 17 and H	Ammonium, NH ₄ +1	Acetate, C ₂ H ₃ O ₂ -1		
H ⁺¹ , hydrogen Li ⁺¹ , lithium Na ⁺¹ , sodium K ⁺¹ , potassium	H ⁻¹ , hydride F ⁻¹ , fluoride Cl ⁻¹ , chloride Br ⁻¹ , bromide	Mercury (I), Hg ₂ +2	Bicarbonate (hydrogen carbonate), HCO ₃ ⁻¹ Carbonate, CO ₃ ⁻²		
Cs ⁺¹ , cesium <u>Group 2</u> Be ⁺² , beryllium Mg ⁺² , magnesium	I ⁻¹ , iodide Group 16 O ⁻² , oxide S ⁻² , sulfide		Perchlorate, ClO ₄ -1 Chlorate, ClO ₃ -1 Chlorite, ClO ₂ -1 Hypochlorite, ClO ⁻¹		
Ca ⁺² , calcium	<u>Group 15</u>		Permanganate, MnO ₄ -1		
Sr ⁺² , strontium Ba ⁺² , barium	N ⁻³ , nitride		Cyanide, CN ⁻¹		
Group 13 Al ⁺³ , aluminum	P ⁻³ , phosphide		Hydroxide, OH ⁻¹ Peroxide, O ₂ ⁻²		
Transition and Heavier Metals					Nitrate, NO ₃ -1 Nitrite, NO ₂ -1
Cr ⁺² , chromium (II) Cr ⁺³ , chromium (III)				Chromate, CrO ₄ -2 Dichromate, Cr ₂ O ₇ -2	
Mn ⁺² , manganese (II) Mn ⁺⁴ , manganese (IV) Mn ⁺⁷ , manganese (VII)			Sulfate, SO ₄ -2 Sulfite, SO ₃ -2		
Cu ⁺¹ , copper (I) Cu ⁺² , copper (II)			Phosphate, PO ₄ -3 Phosphite, PO ₃ -3		
Fe ⁺² , iron (II) Fe ⁺³ , iron (III)					
Pb ⁺² , lead (II) Pb ⁺⁴ , lead (IV)					
Hg ⁺² , mercury (II)					
Ni ⁺² , nickel (II) Ni ⁺³ , nickel (III)					
Sn ⁺² , tin (II) Sn ⁺⁴ , tin (IV)					
Ag ⁺¹ , silver Zn ⁺² , zinc					

^{***}Note: Transition metals are named with Roman numerals to indicate their oxidation state (charge) if they have multiple oxidation states. Silver and zinc are the only transition metals on this list that have a single oxidation state and therefore are not named with roman numerals. As long as you know which transition metals need Roman numerals, individual charges of these metals do not need to be memorized.

N

DO NOT DETACH FROM BOOK.

1	Î			PE	RIO	DIC	TA	BLE	OF	THI	E EL	EM	ENT	\mathbf{r}			2
H 1.0079																	He 4.0026
3	4	i i										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012											10.811	12.011	14.007	16.00	19.00	20.179
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.30	as ::	3	(0) 1		(4) - 2	3	90	33	(4)	36	26.98	28.09	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.938	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr (223)	Ra 226.02	†Ac 227.03	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	§ (269)	§ (272)	§ (277)	§No	ot yet na	ımed			

*Lanthanide Series

†Actinide Series

58	59				63								71
					Eu								
140.12	140.91	144.24	(145)	150.4	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Metric Conversions

<u>Unit</u>	Symbol	* <u>Equivalent Expressions</u> *				
mega	M	1 Mg = 1,000,000 g = 10^6 g	1 Mg = 1,000,000 g = 10 ⁶ g			
kilo	k	1 kg = $1,000 \text{ g} = 10^3 \text{ g}$	1 kg = $1,000 \text{ g} = 10^3 \text{ g}$			
hecta	h	1 hg = 100 g = 10 ² g	1 hg = 100 g = 10 ² g			
deca	da	1 dag = 10 g = 10¹ g	1 dag = 10 g = 10 ¹ g			
0		1g = 10 ⁰ g	1g = 10 ⁰ g			
deci	d	1 g = $10 dg = 10^1 dg$	1 dg = $0.1 g = 10^{-1} g$			
centi	С	$1 g = 100 cg = 10^2 cg$	1 cg = 0.01 g = 10 ⁻² g			
milli	m	1 $g = 1,000 \text{ mg} = 10^3 \text{ mg}$	1 mg = 0.001 g = 10 ⁻³ g			
micro	μ	1 g = 1,000,000 μg = 10 ⁶ μg	1 μg = 0.000001 g = 10-6 g			
nano	n	1 g = 1,000,000,000 ng = 10 ⁹ ng	1 ng = 0.000000001 g = 10 ⁻⁹ g			
pico	р	1 g = 1,000,000,000,000 pg = 10 ¹² pg	1 pg = 0.000000000001 g = 10 ⁻¹² g			

^{*} Any quantity can be substituted for g; ie. 1 L = 1000 mL just as 1 g = 1000 mg

A helpful pnemonic for memorizing prefixes (you need to know these):
Many kids have dropped over dead converting metric measurements in problems.

Advanced Placement Chemistry Review Assignment

Topic 1:	Significant	Figures &	Scientific	Notation
TOPIC I.	Oigimicant	i igui es a	OCICITUIC	Notation

		nificant figures in the fello	wing magaurements	
١.	Count the number of sig	nificant figures in the follo	wing measurements.	
	a. 2.71 g	b. 0.00047 kg	c. 7.0 x 10 ⁵ m	d. 1,030 L

e. 150 pencils _____ f. 37500 µg ____ g. 0.1010 cm ____

2. Express each of the following in proper scientific notation (Pay attention to sig figs and units).

```
a. 0.000125 m _____ b. 155.0 mL _____
```

c. 123,030,000 ng _____ d. 481.9 x 10⁻⁹ cm ____

3. Calculate the correct answer with proper units and significant figures for each of the following:

4. Perform the following calculations with scientific notation and report your answer with the correct number of significant figures.

a.
$$0.14 \times (6.02 \times 10^{23}) =$$

b.
$$(9.875 \times 10^4) - (9.795 \times 10^4) \times 100 \% =$$
 (assume 100 is exact) 9.875×10^4

c.
$$\frac{(3.8 \times 10^{-12} \times 4.0 \times 10^{-13})}{(4 \times 10^{12} \times 6.3 \times 10^{13})} =$$

Topic 2: Dimensional Analysis

Show work using dimensional analysis. No work = no credit even if answer is correct. Follow significant figures and rounding rules unless the number of significant figures is specified. Include units where appropriate.

5. How many hours are in a week? Report your answer to three significant figures.

6. Find the number of centimeters in 1.00×10^2 yards. (1 yd = 3 ft, 1 ft = 12 in, 2.54 cm = 1 in)

7. If Jules Verne expressed the title of his famous book, <u>Twenty Thousand Leagues under the Sea</u> in basic SI units, what would the title be? Round your answer to three significant figures. (1 league = 3.45 mi, 1 mi = 1609 m)

8.	How many μL are present in 250 mL of H ₂ O?
9.	Wavelengths are often represented in nm. What is the diameter of a helium (He) atom in nm if it is equivalent to $1.0x10^{-13}$ km?
10	The area of a rectangular room has a length of 10.5 m and a width of 4.50 m. What is this area in m ² ? In cm ² ?
11	.The acceleration of a sphere is determined to be 9.52 m/s ² . What is the acceleration in km/min ² ?
	ppic 3: Density and Temperature now all work. No work = no credit even if answer is correct. Follow significant figures and rounding
	es. Include units where appropriate. A rectangular block has dimensions of 2.9 cm x 3.5 cm x 10.0 cm. The mass of the block is 615.0 grams. What are the volume and the density of the block?
13	The density of pure silver is 10.5 g/mL at 20°C. If 5.25 grams of pure silver pellets are added to a graduated cylinder containing 11.2 mL of water, to what volume will the water in the cylinder rise?

14. You can figure out whether a substance floats or sinks if you know its density and the density of the liquid. In which of the liquids listed below will high-density polyethylene, HDPE, float? HDPE, a common plastic, has a density of 0.97 g/cm³. It does not dissolve in any of the following liquids.

Substance	Density (g/cm ³)
ethylene glycol	1.1088
water	0.9997
ethanol	0.7893
methanol	0.7914
acetic acid	1.0492
glycerol	1.2613

15. Mercury is found as a liquid at room temperature. If it has a boiling point of 630. K, what is this boiling point in degrees Celsius?

Topic 4: Precision and Accuracy

- 16. The density of ethanol was determined experimentally at 25°C in a series of trials to be 0.608 g/mL, 0.705 g/mL, and 0.689 g/mL. The accepted density of ethanol is reported to be 0.789 g/mL.
 - a. Are the experimental densities precise? Why/Why not?
 - b. Calculate % error for this experiment. Use the average experimental density in your calculation and report your answer to 0.1%. Show your work.
 - c. Are the experimental densities accurate? Why/Why not?

Topic 5: Properties and Changes

17.0	Cat	egorize	each	of t	he f	foll	lowin	g as	an	elemen	t, a	compound	l, or	·a	mixt	ure:
------	-----	---------	------	------	------	------	-------	------	----	--------	------	----------	-------	----	------	------

- a. carbonated water

 b. tungsten

 c. aspirin (acetylsalicylic acid)

 d. air

 e. lye (sodium hydroxide)
- f. fluorine

	18. Iron pyrite, also known as fool's gold, has a shiny golden metallic appearance. Crystals are often in the form of perfect cubes. A cube of iron pyrite measuring 0.40 cm on each side has a mass of 0.064 g.								
a. Which of	h of these observations are qualitative and which are quantitative?								
	b. Which of these observations are extensive (dependent on the amount of substance present) and which are intensive (independent of the amount of substance present)?								
19. Identify the following as a physical property, physical change, chemical property, or chemical change: a. Ethanol has a density of 0.697 g/mL.									
	,		•						
		•	xing water and	food coloring.	-				
c. Wood bu									
•	d. Methyl alcohol is highly flammable.								
	e. Ice melts in a beaker.								
•	f. Methyl ethanoate smells like apples.								
J	g. Iron rusts on a car.								
h. Alkali metals react strongly in hydrochloric acid.									
Topic 6: Atom Structure & History 20. How many protons and neutrons are contained in the nucleus of each of the following atoms? How many electrons are present in each of these neutral atoms?									
a. $^{13}_{6}C$	р	rotons	neutro	ns ele	ctrons				
b. $^{208}_{82}Pb$	р	rotons	neutro	ns ele	ctrons				
21. Complete th									
<u>Name</u>	Mass #	Atomic #	# of Protons	# of Neutrons	# of Electrons	<u>Symbol</u>			
Gallium-70					31				
						$^{31}_{15}P^{-3}$			
Strontium-80					36				
						$_{25}^{55}Mn^{+2}$			
80.1% boronexact masse	n-11 (exact r es instead of	mass 11.00 mass num	9 amu). Calcul	late the average alculations. Show	ct mass 10.013 ar atomic mass of bo your work. Follov	oron using the			

figures and rounding rules. Include appropriate units.

	respectively. Calculate the percent abundances of these isotopes of europium to 0.1%. <u>Hint</u> : The percent abundances of these two isotopes must add to 100%. Show your work. Follow significant figures and rounding rules. Include appropriate units.
24	Identify the scientist(s) noted for the following events in atomic history. a. identified the electron; noted for the plum pudding model b. noted for the first atomic theory of the atom; solid sphere model c. developed the planetary model; electrons in fixed orbits d. developed the quantum mechanical model; electrons are localized to orbitals
	e. identified the proton and the nucleus; nuclear model f. determined the charge of an electron g. described wave theory h. known for the uncertainty principle i. developed quantum numbers
25	Identify the model of the atom described in the following statements. a. currently accepted model b. model that first included a subatomic particle
	c. model developed using the gold foil experimentd. original model of the atom; atom was thought to be "indivisible"
	e. model that only showed the movement of hydrogen's electron accurately; involved "quantums"
lde	ntify by name the group or section of the periodic table noted for the following features. a. group containing the most reactive nonmetals; all are diatomics; form -1 ions b. group containing metals that only form +2 ions c. set of metals that often form colored ions in solution; the majority have multiple charges as ions
	d. group containing the most reactive metals; form +1 ions
	e. group containing least reactive elements on periodic table, typically inert
27	These elements start with the letter B: B, Ba, Bk, Bi, and Br. Identify which of these elements match the following descriptions. You may use elements once, more than once, or not at all. a. Which are metals?
	b. Which are liquids?
	c. Which are actinides?
	d. Which are main block elements?

23. Europium has two stable isotopes, 151 Eu and 153 Eu, with masses of 150.9197 u and 152.9212 u,

Topic 8: Compound Nomenclature

28. Name or give the formula for the following compounds. All ions included in the summer letter are required to be memorized by name and by formula.

a.	Name lithium fluoride	<u>Formula</u>	
b.			
c.	calcium phosphate		
d.		_ MnCl ₂	
e.	silver sulfide		
f.		_ Cu ₂ O	
g.	aluminum sulfate		
h.	·	_ ZnCO₃	
i.	chromium (III) phosphide		
J.	Lead (IV) budanida	_ SO ₃	
K.	lead (IV) hydroxide	N ₂ O ₅	
n. m	ammonium sulfite	1\2\O5	
		BaCr ₂ O ₇	
	sodium peroxide		
p.	·	NH₃ (use commo	on names; see ppt/videos if necessary)
q.	nickel (II) hypochlorite	<u> </u>	
r.		_ Fe(CN)₃	
s.	rubidium chromate		
t.		$_{\text{Mg}_3(\text{PO}_4)_2}$	

Topic 9: Equations

29. Balance the following equations using the lowest whole-number coefficients.

a. __Fe + __P₄
$$\rightarrow$$
 __Fe₃P₂

b. __Ca + __H₂O
$$\rightarrow$$
 __Ca(OH)₂ + __H₂

c.
$$_Ba(OH)_2 + __H_3PO_4 \rightarrow __Ba_3(PO_4)_2 + __H_2O$$

d. __(NH₄)₂CO₃ + __AI(CIO₃)₃
$$\rightarrow$$
 __AI₂(CO₃)₃ + __NH₄CIO₃

30. Write balanced chemical equations for the following word equations. Use the lowest possible whole-number coefficients to balance the equations.a. Aqueous solutions of ammonium sulfate and barium nitrate form a precipitate of barium sulfate and aqueous ammonium nitrate.
b. Elemental magnesium and oxygen gas combine to form solid magnesium oxide.
c. Chlorine gas and aqueous potassium bromide react to form bromine liquid and aqueous potassium chloride.
 d. Solid copper (II) carbonate decomposes to form crystals of copper (II) oxide and carbon dioxide gas.
e. Sulfuric acid is neutralized by lithium hydroxide to form water and aqueous lithium sulfate.
f. Liquid benzene, C ₆ H ₆ , undergoes combustion in oxygen gas, making carbon dioxide gas and steam.
Topic 10: Mole Conversions & Stoichiometry Show your work. No work = no credit. Follow significant figures and rounding rules. Include appropriate units. 31. a. Calculate the number of moles in 500. atoms of iron (Fe).
b. What is the molar mass of lead (IV) carbonate, Pb(CO ₃) ₂ ?
c. How many formula units are present in 87.2 grams of lead (IV) carbonate?

d. What percentage of oxygen is found in lead (IV) carbonate? Round your answer to 0.1%.

32. The reusable booster rockets of the U.S. space shuttle employed a mixture of aluminum and ammonium perchlorate for fuel. A possible reaction for this is:
 Al(s) + NH₄ClO₄(s) → Al₂O₃(s) + AlCl₃(s) + _ NO(g) +H₂O(g) a. Balance the above reaction using the lowest possible whole-number coefficients. b. If 4.00 g of aluminum reacted completely, how many grams of aluminum oxide would be made?
c. If 4.18 g of aluminum chloride was produced, how many moles of ammonium perchlorate would be consumed?
d. How many molecules of nitrogen monoxide would form if 6.3x10 ²⁵ formula units of aluminum oxide were also produced?
33. The decomposition of ammonia is shown in the following equation: 2NH₃(g) → N₂(g) + 3H₂(g). a. 42.0 g of nitrogen has what volume in liters at STP?
b. 150 L of NH ₃ undergoes decomposition to form how many liters of hydrogen gas at STP?
c. How many liters of ammonia were decomposed at STP if 3.0x10 ²³ nitrogen molecules were made?